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A new method is presented for the approximate solution of integral
radiation equations (1), (2), and (3) in connection with the numerical
determination and study of the values for the local characteristics of
the radiative heat exchange between a pair of unequal parallel circular
gray disks whose centers are situated on 2 common axis.

The results of a numerical study and from the calcu-
lation of the local boundary characteristics for radia-
tion are presented in connection with the fundamental
formulation of the problem of radiative heat exchange
between a pair of parallel circular disks of different
diameters, their centers situated on a common axis.

We assume the disks to be isothermal and gray;
furthermore, we assume the space betweenthese disks
to be filled with a diathermic medium, The disk diam-
eters (d; and dy), the distance between the disks (h),
as well as the disk temperatures (T, and T,), andtheir
emissivities (A, and A,) are specified. We have to
determine the density distribution for the resultant
radiation over the surfaces of each of the disks.

The problem is solved by the new method of nu-
merical (approximate) three-stage solution of integral
radiation equations proposed in [1-3]:

a) the numerical determination of both the local and
the mean geometric radiation angle factors between
various surface elements of one disk relative to the
other: @(M;jFi); M; € Fi i, k=1,2; i = k;

b) the numerical calculation of the local resolving
radiation angle factors: ®&M;,Fi); Mj € Fy; i, k=1,
2; 1 =k;

¢) the numerical determination of Eyeg(}M;j) over
the surfaces of each of the disks.

Basic calculational formulas and expressions, The
solution of the integral radiation equations in the given
case reduces to the following [1-3]:

E o5 (My)
6., (M)= "1V
res ( 1) Eo,l
= A DM, Fg) + A, My, F2)04l, (1)
E o5 (My)
0 M) = — Zres -
res( 2) Eo,l

=4[O M;, Fy) + [ — A0 (M, F)l0n}, (2)

where

Eyp =0y T Epi=2Eo,—Eo; =0y (Tlg — T
. Ty \*
Ti 7‘3=1_(_i)=1_92;

7
6, = (—Ti)4. (3)

0y =

Bearing in mind that the disks are flat, i.e., o(M;,
i) = oMy, Fy) = 0, for the local resolving radiation
angle factors ®(M;, Fi) we derive the following calcu-
lational expressions

D M,, F)=DOWM;, Fy)=
=0M, Fo)+ Rior o(M;, Fy)
MieF; i=1, 2, 3), (4)
DM, Fy=DO M, Fy)=
=@(M;, Fy)+ R @ (M;, Fy)
M, eF;i=1, 2, 3), (5)
where
D =1 —RR; p12 ane (6)
To determine ®M;, F;), we use the expression
OMy, F) =M, Fy) +
+ RO M, F1) @13+ Re® (My, Fy) @as, (7
where
¢ (My, Fy) =1—0@(My, Fp);
My, Fg) =1~ (M, F).

The results from the nunierical calculations of
®(Mj, Fk) were checked by means of closure equations
of the form

AOM;, Fy)+ A OM, Fy)+ ®(M,;, F3) =1
(MiEFi§ i=1,2 3). (8)

Expressions (1) and (2)—on the basis of (8)~can
also be presented in the following form:

Ores (M) =
= A1 — A, O My, Fi)— A, @ (M, Fy) 6y, (1a)
0res (M) =
=4[l — A, © (My, F2)(2—0;) — A, O M, FI.  (2a)

In the above-cited expressions F; is the imaginary
side surface of a truncated cone with bases F; and F,
for which we must assume A; =1 and R; =.0; the tem-
perature T3 must be set equal to absolute zero.

Bearing in mind that (M, F,) = ¢(M,, Fy) = 0, from
expressions (4), (5), and (7) we obtain the following
calculational expressions:

@ (My, Fy) 9)

(I) M N F)= ’
(M, Fo 1— RiR; 13921
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oMy, Fy) = Re9p@Mu B b oo, Fy, (10)

I— Ry R, 12921

(P(M21 Fl)
O (M,, Fy) = —"—"""""— (11)
* £5) 1— R\Rs ¢1a%a
Ri @120 (Mo, Fr)

O (M,, F,) =
(M F) 1—RiR; 9120n

= R; @15 ® (M,, Fy), (12)

DMy, F)=1—0 (M, Fi) + Ry ®M;, Fy) +

+ Ry g @ (M, F), {13)
DMy, Fp)=1—0¢ My F1) + Ry @My, Fy)+
T Ry 9o @ (M, Fy). (14)

The numerical calculations of &(M;, Fi) can be
checked by means of the expressions

DM, Fo)=1—A,0OM, F})—A,DOM, F), (15)
and
OM,, Fo) =1 —AOM,, Fy)— A, DMy, Fp).  (16)

Determination of the geometric local radiation
angle factors ¢(M;j, Fi). To determine ¢(Mj, Fi) from
the surface element of one disk to the other parallel
disk, we use the formula

1 2L ad—1
B (M, F) =] 1= — =t _
2 Vit + ol + 17 — 4d

]’ amn

where hy = h/r; and ay = a/ry. Here a is the instanta-
neous coordinate of the point M; which defines the
position of the area dFMi, and h is the distance be-
tween the disks. The numerical calculations of ¢(M;,
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Fig. 1. Local resolving and local
geometric angle coefficients of
radiation versus dimensionless
coodinate for various values of
h/ry = 2; 1) h/ry = 15 2) h/ry = 2;
1,2) (M, F,) and ¢(M,, F,) coin
cide; 3,4,5,6) h/ry = 2; 3,7) Ay =
= A, =0.9; 4 A=A = 0.8; 5,8;
Aj=A,=0.4; 6,9) A = A, = 0.2,

Fy) (i, k=1,2; i = k) are presented for the case in
which the ratio dy/d; of the disk diameters is equal to
two, with the values of D(My, F,) = ¢(M, F,) having
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been found as functions of the quantity a, = a/r,,
ranging from zero to 0.5 for the two values of the
parameters hy = h/r; = 1,2 and as a function of g, =

ere'(Ml) /.
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Fig. 2. Dimensionless density
of resulting radiation versus
dimensionless coodinate a/r
for various geometric factors
h/r:a) A;j= Ay, = 0.8; b} A, =
=A;=0.4;1,3,4,6,9,10) h/
r,=1;1,4) 6,=0; 2,3,5,6)

0, =1.56;1,2,4,5,7,8) b/r, = 2.

= a/r,, ranging from zero to two for values of h; =
=h/r, = 2,4. These functions are shown in Fig, 1from
which it follows that with an increase in a; = a/r, the
values of ¢(M;, Fi) (i,k=1,2; i = k) diminish slightly.
Analogous relationships exist for &M,,F;). The rela-
tionship between &(M,,F3) and a; = a/r, for various
values of hy = h/r, and of A| and A, are shown in Fig, 1.

However, of greatest interest is the dimensionless
density 6,o5(M;) of the resultant radiation as a func-
tion of a; = a/r, for the various values of Ay, A,, and
f,, presented in Figs. 2,3, and 4,

Here the emissivities (A; and A,) of the disks were
assumed to have the following values: A; = A;=0.1,
0.2, 0.4, 0.6, 0.8, 0.9; b) A{=0.8; Ay = 0.7, 0.6, 0.4.

The dimensionless temperature factor 0, was, re-
spectively, assumed to be equal to

o= (L)
T
= 0. 0.1. 0.3, 0.5. 0.7. 1.0, 1.5, 2.0, 3.0%.

Analysis of the calculational results, Figure 2
shows the dimensionless density 0,,4(M;) for the
resultant radiation as a function of the dimensionless
coordinates a/r over the radius of disk 1 for various
values of 6, = (To/T)! and A| = A,. As is clearly
shown by the graphs, for various values of 8; and A =
= Ay, 0peg(M) is minimum in value at the center of

*We note that 6, = 1 and 0, = 0 pertain, respectively,
to the cases in which the disks exhibit identical tem~
perature (6, = 1) and to the case in which the tempera-
ture of one of the disks is equal to zero (8, = 0).
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the disk, increasing slightly with approach to the peri-
pheral points. When A = A, = 0.8; h/r, = 1and 6, =

= 1.5, the change in 6,,g(M) becomes more pro-
nounced, as we can see from curve 10 shown in Fig, 2,

The value of 0,,,4(M;) at the various points of the
disk is virtually constant for fixed values of §; and
Ay = A,; this is explained by the great distance h/r, =
= 2 between the disks. For h/r, = 1, the indicated
relationship is all the more pronounced and it is the
greater, the higher the value of 0, = (T,/T)*, It should
be noted here that even when 8, = 1,5 and h/ry = 1 for
A; = A, = 0.8 the values of 0,,4(M;} become negative
at all points on the disk surface, whereas, at values
of 6, = 0, 1.0, the values of 0yeg(M,} are positive. For
values of the emissivities A; and A, equal to 0.38, the
function 6,g(M;) also exhibits a positive value when
8, = 1.5, Since 0pog(M;) varies only slightly over the
disk surface, it becomes of interest to find 8 ,o4(M) at
certain fixed points M of the disk as a function of 9,
for various values of A; and A,, as well as a function
of A, and A, for various values of 0,, as shown in Figs,
3 and 4.

We see from these figures than when dy/d; = 2 and
h/ry = 1, the dimensionless density 6,pg(M;) of the
resultant radiation at the point My (a/r = 1/4) with an
increase in A; = A, increases all the more, the smaller
the value of 6,. However, even when 6, = 1.5, wehave
a diminishing function which from A; = A, = 0.4 on
can even assume negative values. Figure 3 also shows
curves demonstrating this relationship for h/r, = 2.

It is essential that we point out (see Fig, 4) that if
the value of 6,,.(M;) remains virtually constant for a
change in 0, from zero to 0.5, with a further increase
in 0, the resulting reduction in 8,55(M;) is the greater,
the larger 6, and A, = A,, so that for certain specific
values of ¢ (which are the smaller, the larger A; = A,)
the function 6,eg(M,) become negative,

In conclusion, we note that for the special case of
two equal disks with identical emigsivities, the numer-
ical calculations of the local radiation characteristics
were first carried out by means of Sparrow computers
[7]. However, the computational method employed in
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[7] is marked by the fact that it is cumbersome and
excessively complex, which was pointed out, in par-
ticular, in reference [5].

A systematic investigation has been undertaken in
this paper and a solution derived for the problem as-
sociated with the determination of local radiation
characteristics for the more general case of unequal
disks with various temperature and emissivity values.

NOTATION

@M, Fi) and &(Mi, F) are the local geometric
and resolving angle factor for the radiation from point
M;j of surface Fj to surface Fi; @jk is the mean geo-
metric radiation angle factor from surface Fj to sur-
face Fk; Epeg(Mj) and 6,.,4(M,) are the local and
dimensionless densities of the resulting radiation at
point M; of surface Fj.
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